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1. Introduction.

Let X, Y be Banach spaces and A C R' a bounded interval. Let F : A x X - Y be a smooth

operater. The nonlinear equation

(1.1) F(A, u) = 0,

with parameters A E A is called parametrized nonlinear equations.

In this paper we deal with the parametrized nonlinear equation F A x Hd(J) -- H-1(J)

with one parameter A E A C R defined by

(1.2) F(A, u) = 0, (A, u) E A x

(1.3) < F(Au),v >:= j[a(Ax,u'(z))v'(z)+f(Azu(x))v(x)]dx, Vv E

where J := (b,c) C R is a bounded interval, a,f : A x J x R - R are sufficiently smooth

functions, and < -,. > is the duality pair of H-I(J) and HI(J). Since F is a second order

differential operator in divergence form, finite element solutions of (1.2) are defined in a natural

way.

In [TB1], the above problem was concerned, and a priori error estimates of finite element

solutions were established. In this papar we try to develop a postriori error estimates of the

finite element solutions of (1.2) and (1.3) using a priori estimates obtained in [TB1].

The basic idea. is as follows. Suppose that we want to solve the nonlinear equation

(1.4) < K(x),v>=0 for Vv E H'(J),

where K : HO(J) -* H-'(J) is a smooth nonlinear operator. Let %h C HI(J) be a finite element

space and Xh E Sh the finite element solution, that is,

0

(1.5) < K(zh),vh >= 0 for Vvh E Sh.

Then, we consider the linearized equation

(1.6) < DK(xh)V/,v >- - < K(xh),v > Vv E H'(J),

where DK(zh) is the Fr6chet derivative at xh which is assumed to be an isomorphism between

HOI(J) and H-I(J).

Let z E H'(J) be the exact solution of (1.4). In Section 3 we will see that the magnitude

Ilikl represents the error i1X - 4hl1, that is,

11X - Xhl S I11010 + o1



Of course, the exact solution P E Ht(J) of (1.6) should be approximated by a certain way

in general. We will consider a finite element solution Ih of (1.6). We observe, however, that the

finite element solution ?Ph of (1.6) over Sh defined by

< DK(zh)•iPh,vh >= - < K(zh), vh >, Vvh E Sh

is a zero function because of (1.5). Therefore, estimating the magnitude I1111 is equivalent to

estimating 1 - 0hl: the error of the finite element solution *h.

Hence, if we have certain methodology for a posteriori error estimates for the linearized

equation (1.6), we have a posteriori error estimates for the original nonlinear equation (1.4). In

a short sentence, the principle obtained here is that

"If we have a posteriori estimates of linear equations,

we have a posteriori estimates of nonlinear equations."

Let (A,u) be the exact solution of (1.2) and (Ah,Uh) be the finite element solution corre-

sponding to (A, u). Usually, it is observed that the error IA - Ah, is much smaller than the error

11U - uhli. In Section 4 we obtain elaborate error estimates of JA - Ahl which verify the above

observation.

In Section 5 practical aspects of our a posteriori estimates and some numerical examples

are given. In the computation of our numerical examples the continuation program package

PITCON (see [RI) developed by Rheinboldt and his colleagues is used.

This paper is a revision of a part of one of the authors Ph.D. dissertation [T].

2. Assumptions and A Priori Estimates.

In this section we sumerize the results obtained in [TB1]. Throughout this paper, we use same

notation as in [TBI].

Here, we deal with the nonlinear operator F : A x W0' - W-",' by, for A E A and

0

(2.1) < F(A, u), v >:= I[a(A, z, u'(x))v'(x) + f(A, x, u(z))v(x)ldx, Vv E W01",

where < .,. > is the duality pairing between W- 1', and W' 1. Then, our problem is
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Problem 2.1. Solve the following equation: Find A E A and u E W10 0 such that

< F(A, u), v >= 0, Vv E W"l. 0

For F being well-defined and smooth we require several conditions to a and f. Let ar =

(al,a2) be usual multiple index with respect to A and y. That is, for a = (a 1, a 2 ), D'a(A,z,y)

means I I a(A, z, y).

Let d> 1 be an integer. For a, cai :_ d, we define the maps Wa(u) and Fa(u) for u E W"'

by

(2.2) A'(u)(x) := Da(A, X, u(x)),

(2.3) F"(u)(x) := D'f(A,x,u(x)).

We then assume that

Assumption 2.2. For all a, jaI < d, we suppose that

(1) For almost all z E J, D'a(A,x,y) and Daf(A,z,y) exist at all (A,y) E A x R. and they are

Carath6odory continuous.

(2) The mapping A' defined by (2.2) is a continuous operator from W01" to L', and the image

Pt0(U) C L- of any bounded subset U C A x W.'° is bounded.

(3) The mapping Fa defined by (2.3) is a continuous operator from W"'• to L', and the image

F*(U) C Ll of any bounded subset U C A x W01" is bounded. [

We define the subset S C A x WO0° by

(2.4) S := {(A,u) E A x W0,"I ay(A,x,u'(x))-f E L}.

Since the mapping A x W-'0 3 (A, u) - a,(Axu'(x)) E L' is continuous, we have

Lemma 2.3. Ifa and f satisfy Assumption 2.2 with d > 1, S is an open set in A x W"0 .
00

From the standard theory of Fredholm operators, we obtain the following theorem:

Theorem 2.4. Suppose that a and f satisfy Assumption 2.2 with d > 1. Then in S. the

operator F : S - W-',' defined by (2.1) is a nonlinear Fredholm operator of index 1. 0

4



We define the subset 1Z(F, S) C S by

(2.5) 7Z(FS) := {(A, u) E SIDF(A,u) is onto}.

The elements of JZ(F, S) and F(1Z(F, S)) are called regular points and regular values,

respectively. By Theorem 2.4, we can apply the Fink-Rheinboldt theory ([FR1],[FR2],[R]) to

the operator F and obtain the following.

Theorem 2.5. Suppose that a and f satisfy Assumption 2.2 with d > 1. Let e E F(1Z( F, S)).

Then

M = M :- {(A, u) E JZ(F,S) I F(A,,u) = e}

is a one-dimensional Cd-manifold without boundary. Moreover, for each (A, u) E .". the tangent

space T(X,,,)M at (A,u) is KerDF(A, u).

Therefore, if 0 E F(JZ(FS)), the solutions of Problem 2.1 form a one-dimensional Cd-

manifold without boundary in Z(F,,S). 0

In the sequel of this paper we always assume that 0 E F(R.(F,S)), that is, ."o 0 0.

For the regularigy of (A, u) E M 0 , we need additional assumptions. Let p', 2 < p" < C be

taken and fixed.

Assumption 2.6. Under Assumption 2.2 with d > 1, we assume that

(1) For all A E A, the functions a(A,., .), a)(A,., .) : J x R -- R are continuous.

(2) For all (A,y) E A x R, there exist a.(Az,y) for almost all x E J and are Carath6odory

continuous.

(3) The composition functions f(A, z, u(z)), a,(A, z, u'(z)) are in LP' for any (A, u) E A x Wo

Moreover, for any bounded subsets K C A x W01,

{f(A, z, u(z)) E • I (A, u) E K}, {a(A, z, u'(z)) E L"I (A, u) E K}

are bounded in LP*. 0

Theorem 2.7. Under Assumption 2.2 and 2.6, we have u E W2',P for all (A, u) E A-0.

Moreover, for all bounded closed subsets Al C A,40, there exists a constant K'(.:') such that

sup. Ilullw,.,, <_ (.)
(A,,i)E.M



Let Sh C H0I be a finite element space. We define the finite element solutions of Problem 2.1

by
a

Piroblem 2.8. Find Ah E A and uh E Sh such that

<F(Ah,uh),vh>=0, VvhESh. E

Let a E L'" be such that a(x) > e > 0 for all z E J Let (-,.)• be the inner product of H0

defined by (u,v), : cau'v'dx for u,v E H'. Define the isomorphism T, E C(W-'-, W1'0)

by < 77,v >= (T.tiv)0 , Vv E W"'1 for 77 E W-"',. Also, define the canonical projection

11' H' -- 5 h by (4'- II0J, vh), = 0, Vvh E 5 h for '0 E HO. Then, we observe that, for any

vh E Sh and any v E HIO,

< F(A•,uh),vh >= 0 4=:*< TJ'lI•TJF(Ah,vh),v >= 0.

Following the Fink-Rheinboldt theory we define T : A x WO" - W-"', by

Th(A, u):= (I - Ph*)T 1 u + P'F(A, u),

where I is the identity of W-',", and h := T'III•T0 .

Lemma 2.9 ([R,Lemma 5.1]). The operator T- satisfies the following:
0

(1) Th(A,u) = 0 for some (A, u) E A x 1td if and only if (A,u) E A x Sh and Fh((A. ui) = 0.

(2) Tl is a Fredholm operator of index I on A x 1d. 0

By Lemma 2.9, we have the following theorem as a consequence of the Fink-Rheinboldt

theory.

Theorem 2.10. Suppose that F is C" mapping (d > 1). Then the set of the finite elements

solutions of Problem 2.8,

Mh := (Ah, uh) E 1Z(Fh,A x Hd))IFh(A\h,uh) = 0}

is a Cd manifold without boundary. 0

For a priori error estimates of the finite element solutions, we always assume the following.
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Assumption 2.11. We assume that

(1) Assumption 2.2 with d (i.e. F is a Cd Fredholm map).

(2) 0 E F(R(F, S)) (i.e. Mo # 0).

(3) Assumption 2.6 (i.e. u E W 2,p', 2 < p" <oo for any (A, u) E Mo).

(4) S% is regular and lim inf 1u - VhIIHI = 0, for any u E H1.
h--0 

01

(5) The triangulation of %, (in one dimensional case, the partition of J into small intervals)

satisfies the inverse assumption [C,p140]. 0

In the sequel, we denote by Ih : W01J - %, the interpolant projection.

Theorem 2.12. Suppose that Assumption 2.11 holds for d > 2. Also, suppose that M0o C

Mo is a compact regular branch, that is, there is a compact interval A C A and C2 map

i- u(A) E W"' such that

Mo = {(A,u(A)) E Mo I D,,F(A,u(A)) is an isomorphism for VA E A}.

Then, there exists the corresponding finite element solution branch Mh C .. h which is

parametrized by the same A E X and

Il,,u(A) - Uh(A)IH, <K

Ilu(A) - uh(A)IIH < K•ilu(A) - IIhu(A)IIH',

IIu(A) - Uh(A)IIWN.o < K2 h"

for all A E X, u(A) E M•o, uh(A) E 31h, and 77 with 0 < 77 < ½. Here, Ko, K 1 ,'K2 > 0 are

constants independent of h and A.

Moreover, we have

MC1Z(F,.S). C0

Theorem 2.13. Suppose that Assumption 2.11 holds for d > 2. Let Mo C .M4o be a

connected compact subset with the following properties:

(1) DxF(A,u) $ 0 for any (A,u) E ý4o.

(2) There exist zo E J such that DG(A, u) defined by, for given "Y E R,

(2.6) G(A, u) := (u(zo) - y, F(,, u)), (,, u) E S

(2.7) DG(A,u)(t,0) = (?P(zo),DF(A,u)(t, )), t E R,. 0 E W0
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is an isomorphism at all (A, u) E Mo.

Then Mo is parametrized by y = u(xo). We assume without loss of generality that the
0

above z0 is a nodal point of Sh for all sufficiently small h > 0.

Then there exists the corresponding finite element solution branch M4 h C Mh which is

parametrized by the same y, that is, uh(Y)(zO) = I and Fh(Ah(-Y), uh(Y)) = 0 for any y.

Moreover, we have

IA(-y) - Ah(Y)l + IllhU(Y) - Uh(-Y)IIH, < K h5 +7,

IA(yý) - Ah(Y)I + IIu(-y) - Uh(Y)IIHI < K4 11u(Y) - lIhU(-Y)IIH,,

IA(yý) - Ah(-Y)I + IIu(Y) - Uh(-Y)IIvwIo < K5h",

Mh C I(F, 5),

for all y = u(xo), (A(-y),,u(Y)) E Mo,(Ah(-Y),Uh(0)) E 3h, and t7 with 0 < ,7 < 4. Here.

K3, K 4 , K5 are positive constants independent of h and y. 0

3. A Posteriori Error Estimates.

In this section we consider a posteriori error estimates. Before going into our problem. we

observe an error estimate in a general Banach space setting.

Let X and Y be Banach spaces and V C X open. We consider a generic C2 mapping

K : V - Y such that DK(x) E £(X,Y) is an isomorphism at each x E V, and D2-h'(z) is

bounded on bounded subsets in V.

Suppose that we are considering the equation

(3.1) K(t) = 0, t E V.

Let tex E V be an exact solution, i.e. K(tEX) = 0, and tAp E V an approximate solution, i.e.

K(tAp) ;: 0. Note that, since DK(tEX) is an isomorphism, tEx E V is isolated. that is. there

is no other solution of (3.1) in the small enough neighborhood of tEX.

From elementary calculus on Banach spaces, we have

(3.2) 0 =K(tAp) + DK(tAp)Z + 2(0 (1 - s)2D 2 K(tAP + sz)ds (Z, z).

where z := tEX tAP. Let us consider the following linearized equation:

(3.3) 0 = K(tAp) + DK(tAP)i, 5 E V.
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From (3.2) and (3.3) we obtain

(3.4) DK(tAP)(z - i) = - 1(1 - s)2D2K(tAP + s (z,z),
2 )kZia)

(3.5) (tAp) - s) 2D2 K(tA + sz)ds) (zz)l

and
i~z - • x < ! ID R(tAP) -1.IL(Y x) Jo lID 2 K (tAP + sz)jLr(x xxy)dsllzilj .

Since D 2 K E C(X x X, Y) is bounded on bounded subsets, there is a constant M such that

liz - ilix < MiIzIl , and we obtain

(3.6) IlzIlx •< Illlx(1 + O(IlPIIx)).

By the argument in [TB1,Section 4], we know that, at each (A, u) E M 0 , we have either

Case 1: KerD,,F(A,u) = {0} and Dx F(A,u) E ImD,,F(A,u), or

Case 2: dimKerD,,F(,\, u) = I and D)F(X, u) f ImDuF(A, u).

Now, let us suppose that we are in Case 1. To apply (3.6) we set up the following
1,o -W_,oo,

X D V = IZ(F,,S) defined by (2.5),

K(u) = F(A, u) for given and fixed A E A.

From (3.6), we have

IIu - UhllwO.O < IIUIlwI.o(1 + O(lIUtIIwd..o)),

where (A, u) E MO, (A, uh) E Mh and U is the exact solution of the linearized equation

(3.7) •<DF(A,uh,)U, V >1= -,,0< F(A, uh), V >1, Vv E WV01'1.1

By Theorem 2.12, we have lim F(A, uh) = 0 and lirn IIUIIwi. = 0. Therefore, we obtain
;--O h-O o

Theorem 3.1. Surpose that (A,u) E Mo is on a regular branch. Then we have. under

Assumption 2.11 with d > 2,

Ilu - UhIIW.OO < IIUIIwI.-(1 + o(1)). 0

We next consider an a posteriori error estimate in Hd0-norm. From (3.5). we have

z-U DF(A, uh) (1s)2DUF(,uh + sz)ds (zz)]
29
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Swhere z u - uh. Recall that D,,F(A,u) E £(Hol., H-') is an isomorphism, and

o< (1- s) 2 D,, F(A, uh + sz)ds (z,z),v >1

= j(a.(z)z2v' + OI(x)z 2 v)dx, Vv E W01",

where ac(z) j= (1 - s)2a,11(A, x, uh + sz')ds and 01(z) := ( - s) 2fvy(A, X, uh + sz)ds.

Hence, we get

( (1 - s) 2 D•,F(A, uh + sz)ds (z,z) <_ Ila1IlLIZLz + 1 Lil[c
fo U II~~~~~~H-I : IIILIZIL 11I- L

< CllIzIIlwL•,oljlHI,

and

I1Z - UIIH < C211Z1wI.O11OZIIH..

Therefore, by Theorem (2.12), we obtain IlzllHi < IIUIIHi (1+C,3 h) for any 77 with 0 < 77 < T

and

Theorem 3.2. Suppose that (A, u) E ",0 is on a regular branch. Then we have, under

Assumption 2.11 with d > 2,

IIU - UhIlIH < IIUIIH, (+ o(1)). 0

Next, let (A,u) E A40 such that DAF(,\,u) 5 0. Then, by Theorem 2.13, there exists a0

nodal point z0 E J of Sh such that the Fr~chet derivative DG(A,u) of the mapping G(A. u)

(u(xo) - Y, F(A, u)) is an isomorphism of R x W0I' to R x W-1,-.

We consider the following problem.

Problem 3.3. For given 'y E R, find u E W0110 and A E A such that

o<F(A,u),v >1=0, Vv E W01", and u(zo) = y. 0

Problem 3.3 -orresponds to the equation G(A, u) = (0,0). Naturally, we define the finite

element solution for Problem 3.3 by

a

Problem 3 .3 FE. For given y E R, find Uh E Sh and Ah E A such that

a

< F(Ah,uh),Vh > =0, Vvh E Sh, and Uh(Z0) = -Y. 03

10



Since DG(A, u) is an isomorphism, we can apply (3.6) to Problem 3.3 and 3 .3 FE. The

linearized equation is

(3.8) (U(zo),ODjF(Ah,uh) + D.F(Ah, uh)U) = (0, -F(Ah, Uh)), 0 E R, U E Wo0

It follows from Theorem 2.13 that lim F(Ah, uh) = 0 and lim(IIUIIwi, + 101) = 0. We set
h--0h

X = R x W01100, Y = R x W'-

K(A, u) = G(A, u) for given y E R

By (3.6), we have

Theorem 3.4. Suppose that (A, u) E Mo satisfies DAF(A,u) 0 0. Then we have, under

Assumption 2.11 with d > 2,

IA - Ahd + IU - UhIwi•O _< (l91 + liIllwi..o) (I + o(1)). 0

We can get an a posteriori error estimate in Hd-norm. Rewriting (3.4) in the above setting,

we have

(3.-9) DG(Ah,uh)(t - O,-z - U) (-s) 2D2G(Ah + st, uh + sz)ds) (t, z)-,

where t := A - A, Z := u - Uh, and

(3.10) D2G(A, u) -(0, D2F(A, u)).

Since

< D2F(A, u)(t, z) 2, v > = t2 ,[aA(A, z, u')v' + f,(A, x, u)v]dz

+ 2t j[axy(A, z, u')z'v' + f~y(A, x, u)zv]dx

+ lj[ay(A, z, u')z'2v' + fyy(A, x, u)z 2v]dz,

we easily obtain

(3.11) IID2 F(Ah + st, Uh + sz)(t, z)211H-1 < Ajtt2 + BItIIIZll 1g1 + CIlZIIW.•l IIZIHl

for any s E [0, 11, where A, B, C are constants independent of h.

Therefore, from (3.9)-(3.11), there exists a constant M such that

It - 01 + IIz - UIIH, < g5(1l9 + (101 + IIZIIW.-, )IIZIIH, ),

and we obtain

11



Theorem 3.5. Suppose that (,\, u) E Mo satisfies DXF(A, u) 96 0. Then we have, under

Assumption 2.11 with d > 2,

IA - Ahl + IIU - Uh11HI < (101 + IUIIHO) (1 + o(1)). C]

Now, to get another a posteriori estimate, we consider the following auxiliary equation: find

W,7 E H/ such that

( -(Cyh(x)W•)' + Oh(•)Wq = -Fh - l7Kh on J - f o(3.12) 7
Sw,?(Xo) = 0,

where th(X) := av(Ah, x,u h(x)), 3h(x):= fy(Ah, x, uh(x)), and

Fh := -a(Ah,x,uh(x))'+f(Ah,, ,Uh(X)),

Kh :- -aX(Ah,X,Ui(X))'+fA(Ah,,z,Uh(z)).

Since (3.12) is equivalent to DG(Ah, Uh)(0, W,7) = (0, -Fh-i7KhO) we see that, for sufficiently

small h > 0, (3.12) has a unique solution W,, for 77 E R which is sufficiently close to 0 (see the

proof of Lemma 4.3).

Note that, even if u'(x) is not continuous,

Dc(() := ah(X)W,(X) + llaA(Ah, X, Uh(X)) + a(Ah, X, Uh(X))

is continuous on J - {xo}. Then, we define the 'jump' J(i 7) at x = xO by

(3.13) J(n) := lim D,7(x) - lim §,7(x).
X-xO- x-XO+

From (3.8) and (3.12), we clearly have J(O) = 0. Let U := W0 . Then, we claim that

Lemma 3.6. We have

IOI + lIUlWO1 <5 llIUlwio,.(1 +o(1)),

1I1 + IIUIIH, < 10UIIH,(- + o()).

Proof. Integrating (3.12) by part, we have

(3.14) < DuF(Ah,uh)U,v >= - < F(Ah,uh),v > +v(Xo)J(O),

for any v E H1. Taking '0 E 5h with V5(zo) = 1 and fixing it, we obtain

(3.15) < DuF(Ah,uh)O,,p >= J(0).

12



Let z E H1 be the function which satisfies z(xo) = 0 and

< DtF(Ah, uh)z,v >=< D,,F(Ah,uh)'k,v >, Vv E Ho0[Xo],

where H/o[Xo= {v E Ho I v(xo) = 0}. Since U(xo) = 0, we have

(3.16) < D.F(Ah,uh)z, U >=< D,,F(Ah, uh)?, U >

It follows from (3.14) that

(3.17) < D,F(Ah, uh)U, wh >= - < F(Ah, uh), wh >= 0, VWh E Sh[Xo],

where Sh[XO: {Vh E Sh I Vh(XO) = 0}.

Since D,,F(Ah, uh) is self-adjoint, we obtain

(3.18) < DuF(Ah, Uh)(Z - Wh), U >=< DuF(Ah, Uh)P, U >

by subtracting (3.17) from (3.16). Combining (3.15) and (3.18), we obtain

IJ(O)l = I < DuF(Ah, uh)(z - Wh), U > I, Vwh E Sh[xoI.

Now, letting wh be the finite element solution of z, we get

IJ(O)l < C1zlZ - WhIIHiIIUllwz,-, lim lz - WhIIHI = 0,-- • h-.-*0

where C1 is a constant independent of h.

Since (3.12) is a linear equation with respect to W,,, the implicit mapping 7 U W7̀ defined

by (3.12) is C' and therefore there exists the derivative of W,, with respect to 77. We denote it

by 8,7W,7. We see that &,,W,, E H I, and it satisfies

(f -9(oh(X)(aqW, )')' + /3h(X)&,W,, = -Kh on J - {Zo},

(3.19) . 8W,()=0o9nwn(Xo) = 0,

Note that integrating (3.19) by part shows us that J(i7) is differentiable and we have

< DA F(Ah, uh) + D.,F(Ah, uh)9,1 W,?, v > = v(xo) J'(71), Vv E Ho10

We remark that J'(77) $ 0. If JY(7) = 0, we would have

(9,7Wv(x-o), DAF(Ah, Uh) + DuF(Ah, uh0),,W,1 ) = (0, 0).

Since DG(Ah, uh) is an isomorphism, we obtain the contradiction (1, 1,'W,7 ) = (0,0).
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Therefore, we obtain -J(0) = J(0) - J(O) = OJ'(ýO), 0 < ý < 1, and

(3.20) 101 <_ IJ'(0)J-'iJ(0)J <• C21z - whIIH•i, IUIýVw. 00 .

On the other hand, we have

(3.21) IW - ITIIw0,,: <c 3 101,

because U = W, = W0 , and the mapping 77 ý- W,7 is C'. Combining (3.20) and (3.21), we

conclude that

101 + IIUIIwioo 101 + IIU - ýllwI.,o + Iluilwoý,.

-< lIUIlwo,,e(1 + o(1)).

The second inequality is proved by the same manner. 0

Theorem 3.7. Suppose that (A,u) E Mo satisfies DAF(A,u) # 0. Then we have, under

Assumption 2.11 with d > 2,

IA - AhI + IIU - UhIIwI.O < IIUIIW0.4(1 + o(1)),

IA - Ahl + Ilu - UhIMl, < IIUIIH,(1 + o(1)),

where U E tId is the exact solution of the following equation:

{I[•lay(Ah,z,u)U'hTV' + fp(Ah, X,Uh)Uv]dx = - < F(Ah,Uh), V >, Vv E H-[xo],

(3.22) U(o) = 0.0

Remark 3.8. From Theorem 3.1, 3.2, 3.4, 3.5, and 3.7, a posteriori estimates of the error

IIU - uhIl and IA - Ahl + IJu - UhIl are reduced to estimates of IUIll, 10, and 11011, respectively.

We will compute the finite element solutions Uh, 9h, Uh of the equations (3.7), (3.8), and (3.22)

and see IIUhII, 10Ji, IIUhII instead of IhUll, 101, IIUIl.

We must, however, notice that the right-hand sides of those linearized equations (3.7).

(3.8), and (3.22) are the terms F(A, uh) and F(Ah,,uh). By the definition, those terms vanish
0 0

for Vh E %h, that is, < F(A, Uh), Vh >=< F(Ah, Uh), vh >= 0 for any Vh E Sh. Hence, the finite
0

element solutions of (3.7), (3.8), and (3.22) over S% would be just the zero functions and they

would be useless to estimate IhUll, 101, and 1Ull.
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We use the different finite element space Sh such that Sh C 31, to avoid this difficulty. That

is, to compute the finite element solutions of (3.7), (3.8), and (3.22), we use the refined mesh

or higher order polynomials on each finite element. Then, we will obtain nonzero finite element

solutions Uh,, Ohl, Uh, and IIUh,1[, 10,1o, I, IlUj, indicate the error I]u-uhlI and IA- AhI+IIu- Uhll,

respectively.

Note that, in the computation of the 11 Uh, 1 1, 10h,,1, lWh, 11, we do not need to solve the entire

problem. The estimations of IljU, II, 10h,, II0h, II are done by an element-by-element approach

(see [BR]).

The details of the practical computation will be presented in Section 5. 0

4. Elaborate Error Estimates of IA - Ahj.

Sometimes, one may want to estimate only the error IA-Ahl. Usually, it is observed that IA - Ad[

is much smaller than Ilu - uhn[lH. In this section we develop two elaborate error estimates of

IA -Ahi.

Let (A, u) E Mo be such that (A, u) is around a turning point or on a 'steep slope'. that is,

D.%F(A, u) # 0. Let the nodal point xo E J of Sh be taken so that DG(A, u) E C(R x V0 "0, R x

W-1-1) is an isomorphism (see Theorem 2.13). Let -y := u(zo). Then, (A, u) is a solution of the

following problem:

Problem 4.1. Find u E W"'° and A E A such that

(4.1) [a(A, x, u'(z))v'(x) + f(A, z, u(x))v(x)ldz = 0, Vv E W01',

U(zo) = 'Y. 0

By Theorem 2.13, it is guaranteed that, for sufficiently small h > 0, there exists a locally

unique solution (Ah, uh) E Mh of the following problem around (A, u) E M 0 .

0

Problem 4 .1FE. Find u E Sh and Ah E A such that

(4.I I f~a(An, z, u'(x))v'(z) + f(A,\ ,, Uh(Z))Vh(X)]dz = 0, Vvh E ýh,

{ uh(Xo) = Y.

To estimate the error IA - Ahl we introduce the following auxiliary equation.

15



Problem 4.2. Find &z E W011 such that

(43) -(a(Ah, X, fi'(z)))' + f(Ah, z, ii(X)) = 0 on J - Izo},

f f(Xo) = -. C

On the existence of the solution f4 of Problem 4.2, we prove the following lemma.

Lemma 4.3. Suppose that Assumption 2.11 holds for d > 2. Let (Ao, uo) E Mo be such

that DjF(Ao,uo) 6 0. By Thorem 2.13 we can take a nodal point xo E J of %h such that

DG(A0 , uo) defined by (2.7) is an isomorphism.

Then, there exist e > 0 and a unique C2 map (A0 - -, A0 + e) 3 A - w(A) E W0'1 which

satisfies

(4.4) - (a(A,x,w(A)'(z)))' + f(A,x,w(A)(x)) = 0, W(A)(zo)= -Y,

where -y := uo(xo).

Proof. Let Wo"'[zo] :- {v E W 1" Ijv(zo) - 0). First, we note that w(A) satisfies (4.4) if and

only if it is the solution of the following equation:

{ j[•a(A,z, w()'(z))v'() +f(ý,x, w(A)(x))v(x)]dx = o, v E Wo"' ([o].

w(A)(zo) = %

Let (W•' 1 [zo])- be the dual space of W01,"[zo]. We define the mapping 0 : A x WoV"- -

R x (Wf'I[xo])- by G(A, w):= (W(zo) - y, F(A, w)jw ..[). Then we have, for u)E 11110

(4.5) D,A,G(A, w)* =(P(zo), (D.F(A, w)?P)jI 1 1[.0)

If we show that D,,G(Ao, uo) E C(WU'`,R x (Wo"'1[z0])") is an isomorphism, Lemma 4.3 is

proved by the implicit function theorem.

Recall that DG(Ao, uo) E C(R x W0'00, R x W-1,') is an isomorphism. Thus, the mapping

DG(A0o, uo)If)XW•01 . is an isomorphism of {0} x Wo'" into its image. From (2.7). we have

(4.6) (DG(Ao, uo)(o 1jXW.-) - = (*(xo), D,F(A0 , uo)V).

By (4.5) and (4.6), we conclude that DG(Ao,uo) is an isomorphism, and this completes

the proof. 03

For w(A) defined by (4.4), we define the 'jump' J(A) of w(A) at z = xo by

J(A):= lim a(A,x,w(A)'(x))- lim a(A,x,w(A)'(X)).

.. zo- •-XO +
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From (4.4), we have

(4.7) < F(A, w(A)), v >= La(ý, x, w(A)')v' + f (A, x, w(A))v~dx = V(Xo)J(A),

for any v E W01". Let ii :=W(Ah). Then, ii is the solution of Problem 4.2, and we have

(4.8) < F(Ah, fi), ?k >= IL[a(,\,, z, ii')p' + f(A, x, fi)V']dx = (h)

for any ?P E W01- with V44zo) = 1.

We take 4' E %, with VP(:ro) = I and fix it. Since (Ah, uh) E Mh, we have

(4.9) LI [a(Ah, X, U'h(X))4" + f (Ah, X, uh(x))41]dx = 0.

From (4.8) and (4.9) we get

(4.10) J(Ah) [c jot(x)(Wi - u' )'ý'4+ I3,(x)(fi - U-h)t+l4']dx,

where

(4.11) I 2~z y=~~(Ah,X, U',(X)), 61i(X) ='f(AXUh),
(4110c 2(X) .a,,, ( A, zU,t4(X) + Ei~fi'(X) - u, (X))), 0 < C, < 1,

# 2 (X) "f ..1 (Ah, Z, uh(z) + E2 0(iiX) - Uh(X))), 0 < (2 < 1,

From the proof of Lemma 4.3 and Urn IJU - UhIIWOI,oo = 0, there exists a unique z E W1
h-0

such that z(xo) =0 and

(4.12) jkxo(x)zfv' + ,Oo(x)zvldx [ao(x)*"v' + 13o(x)4'vJdx, Vv E Wcfr1[Xo].

Note that fi(xo) = uh(xo) = -y. Hence, ii - Uh = 0 at x = zo2. Thus, we obtain

(4.13) Lj~ao(z)z'(fi - Uh)' + fio(*~(ft -Uh)ldx

f j[caO(X)?'(ft -U,,)' +,80(X)4(f - Uh)]dx.

On the other hand, for any w E Sh with w(xO) = 0, we have

Ii(aAh X 7'())'+fJAh, X, a~x)wldx 0,

fi[a(Ah, XU'h(X))W' + f (Ah, x, u,,())w]dx 0.

Therefore, we obtain

(4.14) J0t, (X)(fi' - U)' 1 W' + 0, (X)(fI - Uh) Iw] dx = 0.
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From (4.10), (4.13) and (4.14), it follows that

(4.15)~ JJA)I: [,eo(x)(z' - w')(ft' - u,',) + ý3o(x:)(-z - W)(fl - uh)]dx(4.15) lJ(Ah)I <

+ C[oa(x)(fA' - uh)'+'(V' - w') + ý,(X)(fz - uh)'+ 1 (V - w)]dx

Now, let zh E %h be the finite element solution of z and plug it into (4.15). Then, we obtain

the following higher order error estimate of IJ(Ah)l:

(4.16) fJ(Ah)I _< (i < DF(Ah, uh)(00 - Uh), z - h) >

+ II < D 2 uF(Ah, uh)(ii - Uh )2, V) _ "h > I)(I1+ o(I)).

Let us now see the relationship between IA - Ahd and IJ(Ah)l. By Lemma 4.3, the solution

w(A) of (4.4) is differentiable with respect to A. Differentiating (4.7) with respect to -\, we show

that the function A i-- J(A) is C 2 and satisfies

(4.17) v(zo)J'(A) =< DAxF(A, w(A))+ DF(A, w())(,w(A)),v >, Vv E W'-.

where &•w(A) E W'1" is the derivative of w(A) with respect to A.

RecaUll that (A,u) E MO, DAF(A,u) # 0, u = w(A), and J(A) = 0. We claim that J'(A) $ 0.

If J'(A) = 0, we would have DxF(A, u)+DuF(A, u)(69,u) = 0, and (&,u)(zo) = 0. Since DG(A. u)

is an isomorphism, we have a contradiction that (0,0) = (1,8Au). Since lim IA - Adh = 0. we
h-O

conclude that J'(Ah) # 0 for sufficiently small h > 0.

Thus, we have -J(,\h) = J(A) - J(Ah) = (A - ,\h)J'(Ah + "(,: - Ah)), 0 < ,c < 1. and

(4.18) JA - Ahd = jJ'(Ah + ý(A - Ah))j-' IJ(Ah)l,

for sufficiently small h > 0.

We would like to replace the term IJ'(Ah + -(A - Ah))1- 1 by some computable one. We first

note that

J'(Ah + s(A - Ah)) = J'(Ah) + ý(A - Ah)J"(Ah + M(IN - Ah))

- J'(Ah)(l +o(l)), (0 < . < I).

Hence, we just have to approximate JY(Ah) instead of J'(Ah + ý(A - Ah)).

Again, take 7P E 5 h with bk(zo) = 1 and fix it. From (4.17), we have

(4.19) J'(Ah) =< DAF(Ah, ft) + D.F(,\h, i)(O ), ' >.
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With (4.19) in our mind, we define the 'approximate jump' Jh(Ah) at x = x0 by

(4.20) Jh(Ah) :=< D, F(Ah, uh) + DF(Ah, uh)(O9.uh), V >

where &%uh E Sh[XOI is the finite element solution of the following equation:
0

(4.21) < DuF(Ah,uh)(OAuh),vh >= - < DAF(Ah, uh),vh >, Vvh E Sh[XO].

Now, we would like to estimate IJ'(Ah)-Jh(Ah)l. First, we note that IP.Xi-&)UhIIH1 =o(),

because 19i0 E WO'00 satisfies (&Afi)(zo) = 0, and

< DuF(Ah, f)(0A i),v >= - < DxF(Ah, i),v >, Vv E Ho'[xo].

Subtracting (4.20) from (4.19), we see

J'(Ah)-)-J(Ah) = < DuF(Ah, uh)(pIf-8u0), P > + < D'uF(Ah, uh)(zi-Uh), W >

+ < D~uF(Ah, uh)(QPfi, fi - Uh), ?P > + higher order terms.

Therefore, we obtain

(4.22) IJ'(Ah) - Jh(Ah)l = o(1).

Finally, we replace the term ii - un in (4.16) by u - Uh. Since u = w(A), fi = w(Oh), and

the mapping (A - e, A + c) 9 A .-. w(A) E Wo"- is C 2 class, we have Ilu - fillw,.oo <_ Col,\ - Ad]

with a constant Co independent of h. Therefore, we immediately obtain that

(4.23) 1lii - UhlIH- < IIU - Uhlll- + CHU - ulIw2.o. = I1 - UhIIH, + CCoI,\ - Ahl.

Combining (4.16), (4.18), (4.22), and (4.23), we obtain the first elaborate error estimate of

Theorem 4.4. Suppose that Assumption 2.11 holds for d > 3. Let (A, u) E A4 be such that

D),F(A,u) • 0. By Theorem 2.13 we can take a nodal point zo E J such that DG(A, u) defined

by (2.7) is an isomorphism. Let (Ah, uh) E Mh be the finite element solution corresponding to

(A, u) with u(xo) = Uh(XO). Then, we have the following estimate of IA - Ahl:

(4.24) IA - Ad _ IJh(Ah)V 1 (I < DF(Ah,uh)(u - uh),z - Zh) > I

+II< D, 2,F(Ah, Uh)(u- Uh2 b-- Zh> 1)(1 +o0(1,

where z E HO and zh E• S are, respectively, the exact and finite element solution of (4.12) for

appropriate i, E Sh with *(zo) = 1, and Jh(An) is the 'approximate jump defined by (4.20) and

(4.21). 0
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Now, let us consider the second elaborate error estimate of IA - Ahl.

Again, we consider Problem 4.1 and 4 . 1 FE. From (4.1) and (4.2), we have

(4.25) 0 = (A -Ah) < DAFh, Vh > + < DFh(u - Uh), vh >

+I(A - Ah) 2 < D2AFFh, vh > +(A - Ah) < DL2,Fh(u - Uh), Vh >
2

S< D•Fh(u - uh)2, vh > + higher order terms, Vvh E Sh,

where D,%Fh := DF(Ah, uh), D,,Fh := D,,F(Ah, uh), etc.

We introduce the following auxiliary equation: Find q E R and z E H1 such that

(4.26{ fj[oro(x)z'v'+ #o(x)zv~dx = 77 < 6.,,,v >, Vv E Ho,(4.26)

< DxF z>= 1,

where 6,, is Dirac's delta at xo, and ao, 30 are defined by (4.11). For the existence of the

solution of (4.26), we show the following lemma.

Lemma 4.5. For sufficiently small h > 0, (4.26) has a unique solution (77, z) E R x H1.

Proof. First, suppose that we have Case 1, that is, DU,Fh := D,,F(Ah, uh) E C(H', H-') is

an isomorphism. Then, we have < DAFh, (D,,Fh)-1 (6z") >=< 6 (DFh)-1(D,%F h) ># 0, be-

cause of the way of taking the nodal point xo E J (see the proof of [TBI,Lemma 8.1]). Therefore,

(4.26) has the unique solution ? :=< DF h,(D,,Fh)-1(6.o >-I, z := R(D.Fh)-I(o ").

Next, suppose that we have Case 2, that is, KerD,,Fh =span{4'} and DAFh ý ImDPFh.

There exists (0, ) E R x Ho' such that ODAFh + (D,,Fh)O = 6.0, and 0 E R is determined

uniquely. We check that f € ImD,,Fh, and hence 0 # 0. If 6-- E ImDuFh, there would exist

w E Hl such that 6., = DAFhw. Thus, from [TBI,Lemma 8.1], we obtain an contradiction

0 9< 6=,4' >=< DFhwV >=< D.Fh•p, w >= 0.

Therefore, in this case, (4.26) has the unique solution t7 := 0, z := because

< DAFh,z >=< DjFh, z > +0-1 < D,Fhk,z >= 9-1 < 6, 0 ,z >= 1. 0

Now, let us set v := U - Uh in (4.26). Since < 6,, u - uh >= 0, we obtain

(4.27) < DILF hz, u - uh, >= j [1O(z)z'(u' - u'h) + 30(X)z(u - uh)]dx = 0.
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Since D.Fh is self-adjoint, it follows from (4.27) that

(4.28) - < DFh(u - uh),vh >=< Du,Fh(u - uh), Z - Vh >, Vvh E 5 h.

From (4.25), (4.28), and plugging the finite element solution zh of the equation (4.26) into

Vh in (4.25), we obtain

(A- Ah) < DxFh,-zh > = - < D Fh (u- uh),z-- Zh >

+2O-Ah)2< D~AFh,zh > + (A - Ah) < DFh(uuh), zh >

+i < D.,Fh(u - uh), zh > + higher order terms,

and we have proved the following theorem.

Theorem 4.6. Suppose that Assumption 2.11 holds for d > 3. Let (A.u) E M and

D\F(A,u) i 0. By Theorem 2.13 we can take a nodal point xo E J so that DG(A, u) defined

by (2.7) is an isomorphism. Let (Ah, uh) E Mh be the finite element solution corresponding to

(A, u) with u(zo) = uh(zo).

Then, we have the elaborate error estimate

(4.29) IA - AhI _< (i < DuF(Ah,uh)(u - Uh),Z - Zh) > I
1 2I

+11 < DusF(AC, Uh)(U - uh)2, zh > I)(1 + o( 1)),
2

where z and Zh are the exact and finite element solutions of the equation (4.26), respectively. 0

Remark 4.7. By Theorem 4.4 and 4.6, a priori error estimates of IA - Adl are obtained.

Since we have a posteriori error estimates for lIu - UhIIHI and liz - Zhll4H., and all terms in (4.24)

and (4.29) are computable, those estimates are a posteriori error estimates as well. The detail

of practical computation is given in Section 11. 0

5. Numerical Examples.

In Section 5 we present several numerical examples and discuss some points for implementation

of the a posteriori error estimates presented in this paper. Our first example is the following

simple one:

Example 5.1.

f u"(z) + Au(x) = sin(7z) in J := (0, 1),
1 = u()=u() = 0. 0
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The exact solution of (5.1) is u(x) = sin(rx) around A = ir2 .
A - r!

Let A15 be the uniform mesh of J = (0,1) with 15 elements. Let 5 h C H1 be the finite

element space of piecewise quadratic functions over A15. We use PITCON to compute the finite
0

element solutions (.,Nh, Uh) E R x Sh of (5.1). Table 5.1 shows a part of the output of PITCON.

As Ah is getting close to 7r2, u is getting bigger and the 'slope' is getting steeper. In Table 5.1

the term JA - AhI stands for the error between the exact and computed A. Hence, JA - AhI = 0

means that A is the continuation parameter at that step. We see that while A < 7.13828, A

is the continuation parameter. When A becomes greater than that point, uh(XO), zo 7h or

o :8h (h = 1/15) is taken as the continuation parameter.

Table 5.1: The output of PITCON: Example 5.1.

Ah IA - AhI H0-error N -error

0.0 0.0 3.67717D-4 1.15846D-3
1.32361 0.0 4.24670D-4 1.33773D-3
3.17042 0.0 5.41741D-4 1.70611D-3

5.16503 0.0 7.71425D-4 2.42834D-3
7.13828 0.0 1.32875D-3 4.17803D-3

7.83691 2.02465D-5 1.80565D-3 5.64451 D-3
8.85394 2.29519D-5 3.59614D-3 1.12780D-2

9.38086 2.43528D-5 7.44952D-3 2.34080D-2
9.50916 2.46938D-5 1.00926D-2 3.17268D-2
9.68198 2.51532D-5 1.93655D-2 6.08957D-2
9.75356 2.53434D-5 3.1.2921D-2 9.83730D-2

In Table 5.1 'H0i-error' stands for Ilu--uhIIlH if A is the continuation parameter, and IA- Ah+

IIU - UhIIH/ if A is not the continuation parameter. Also, 'WO,' -error' stands for Ilu - uhlv ,.

if A is the continuation parameter, and IA - Ahd + 11u - uhWIl OO if A is not the continuation

parameter.

Now, we discuss how we estimate those errors. If A is the continuation parameter, we surely

can use a usual method to estimate Ilu - UhIHl . We however use the method presented in this

paper to estimate IJU - UhiIHi here to show how we implement our a posteriori error estimates.

Let Uh E Sh be the piecewise quadratic finite element solution of (5.1) over A15. We then

introduce another finite element space Sh E H0l of piecewise polynomials of degree 4 over A-15 .
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We compute the finite element solution uh E Sh of the following equation:

(5.2) -+ ,\fLih)dx = - ,\Uhih +sin(rX)13h)dx, VWh E Sh.

Then, by Theorem 3.1, 3.2, and Remark 3.8, II4hlHl1 and IJth11wt.o, indicate IHu - UhIIH1 and

HiU - Uhllwi.oo, respectively.

Note that, as stated in Remark 3.8, we do not need to solve the full system of (5.2). Instead

of that we just solve tiny equations defined on each element because we can assume that the

values of the finite element solutions of (5.2) at the nodal points are zero (see [BR]).

As mentioned before, if A is not the continuation parameter, x0 = 7h or z0 = 8h (h = 1/15)

was taken by PITCON so that Uh(XO) is the continuation parameter at that step. In that case,

we use the methods presented by Theorem 3.4, 3.5, and 3.7. We first approximate the exact

solution (0, U1) E R x H0' of the equation

(Uv + AhUlv)dx + uhvdx j (u v' - Ahuhv + sin(rx)v)dx, Vv ,

with Ul(zo) = 0 (see (3.8)). We also approximate the exact solution U2 E HI of the equation

(5.4) L(-UUv' + )AU 2v)dz = j(uv'-- Ahuhv + sin(rx)v)dx,

with U2(zo) = 0 for any v E H' with v(xo) = 0 (see (3.22)).

Let (0h, Ulh) E R x 3h and U2h E Sh be the finite element solutions of (5.3) and (5.4),

respectively. By Theorem 3.4, 3.5, 3.7, and Remark 3.8, we have the following estimates:{ jA - Ahd + IlU - UhIHHlI < (10hi + IIUahlIHI )(1 + 0(1)),

(5.5) IA - Adi + Iu - Uhh1wI.oo <_ (Iol + IIUl•hIwg. )(1 + o(l)),

(5.6) {A - Ahl + Ilu - UhHlHl < IIUM11HH0(1 + o(1)),

I 1A - AdJ + 11U - UhIwa.o* <_ ItU2h11Wi,,o(1 + 0(1)).

Again, to solve (5.3) and (5.4), we take the element-by-element approach, that is, instead of

computing full systems, we solve tiny equations on each element. Note that in the computation

of (5.3), the value Oh is determined at first by solving an equation defined by (5.3) on the two

elements which contain z 0 as a nodal points. Then the rest of Ulh is computed using the obtained

Oh.

In Table 5.2, we summarize the results of computation. In Table 5.2, '\h', 'Hl-error' and
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Table 5.2: The estimated errors of 1,\ - Ad + I1U - uhil: Example 5.1.

'g-error H'-est(1 ) H'-est(2 ) W 1',-error tV'"-est(1) W -- est(2)

0.0 3.67717D-4 3.67729D-4 1.15846D-3 1.15905D-3
1.32361 4.24670D-4 4.24684D-4 1.33773 D-3 1.33856D-3
3.17042 5.41741D-4 5.41758D-4 1.70611D-3 1.70757D-3
5.16503 7.71425D-4 7.71448D-4 2.42834D-3 2.43154D-3
7.13828 1.32875D-3 1.32877D-3 4.17803D-3 4.18819D-3
7.83691 1.80565D-3 1.80641D-3 1.78547D-3 5.64451D-3 5.64856D-3 5.62764D-3
8.85394 3.59614D-3 3.59692D-3 3.57331D-3 1.12780D-2 1.12864D-2 1.12628D-2
9.38086 7.44952D-3 7.45042D-3 7.42542D-3 2.34080D-2 2.34293D-2 2.34043D-2
9.50916 1.00926D-2 1.00936D-2 1.00683D-2 3.17268D-2 3.1 7597D-2 3.17343D-2
9.68198 1.93655D-2 1.93667D-2 1.93409D-2 6.08957D-2 6.09867D-2 6.09608D-2
9.75356 3.12921D-2 3.12935D-2 3.12675D-2 9.83730D-2 9.85787D-2 9.85525D-2

'Wo''0 -error' are exactly same to those in Table 5.1. For Ah less than 7.5, 'H1-est(1)' and "j,0,o' -

est(')' stand for IIfihl1,H and IjfIhIIWlo, respectively, where fih E ýh is the finite element solution

of (5.2).

For A greater than 7.5, 'Hest()' and W est(' are the estimated errors given by

(5.5). Also, 'Ho-est(2)' and 'WO'00est(2)' are the estimated errors given by (5.6). We see that

the estimated error Hg-est(1 ) and Wo1'00-est(') match very well to the corresponding exact errors.

H0-eSt(2 ) and W0'o est(2) are slightly underestimated. We however notice that those estimated

errors are very close to the exact errors 11u - uhflHti and 11u - Uh1wi.oo, respectively.

Now, let us turn into a posteriori error estimates of IA - Ahi. Suppose that A is not the

continuation parameter. In that case, as stated before, either x0 := 7h or zo := 8h (h := 1/15)

is taken by PITCON. Let 4 E %h be a piecewise linear function such that W0(zo) = 1. and

P(z,) = 0 if x, A xo, where x, are nodal points of A15.

Then, we consider the following equation (see (4.12)): Z(zo) = 0 and

(5.7) I (-•z'v' + Ahzv)dx = I((-?P'V' + Ah4'V)dx, Vv E HMo with v(xo) = 0.

Let zh E Sh be the finite element solution of (5.7) on A15. Of course, we can estimate the error

11Z - ZhllHli by a usual method (see [BR]).

Next, let Wh E Sh be the finite element solution of the following equation (see (4.21)):

Wh(ZO) = 0 and

(--W'v + AhWhVh)dx =- UgVhdZ, Vvh E Sh with Vh(XO) = 0.
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We then compute the 'approximate jump' J(,(Ah) by (see (4.20))

Jh('\h) j(-whl' + AhwhV) + UhVp)dx.

By Theorem 4.4, the error IA - Ahl is estimated by

(5.8) IA - Ahd < IJh(Ah)l-'IIz - ZhIlHIIU - UhIIH,(1 + o(1)).

On the second method of the a posteriori error estimates of IA- AhI, we consider the following

auxiliary equation (see (4.26)):

(5.9) jtuhzdx = 1, and j(-z'v' + Ahzv)dx = i7v(xo), Vv E H1.

Let (7h, Zh) E R x Sh be the finite element solution of (5.9). To estimate the error 1iz - ZhlgH°

we consider the finite element solution (0h, 4h) E R x Sh of the following equation: (j Uhihdx = 0weJ

and

S+ Ah J h)dx - T h(XO) = 77hh(XO) + I (Zhf h AhZh-h)dx, V~h E Sh

Then, we have the estimate 1iz - ZhIIHI < (Ohl + IIzhll. ) I -t- o(l)). By Theorem 4.6, we have

the error estimate

(5.10) IA - Ahl < I11 - UhIlHI 1Iz - ZhllHI (1 + o(1)).

In Table 5.3 we summarize the results of computation.

Table 5.3: The estimated errors of IA - Ahl: Example 5.1.

Ah IA - Ahd IA - Ahl-est(') IA - Ah{-est(2 )

7.83691 2.02465D-5 2.09092D-5 2.09092D-5
8.85394 2.29519D-5 2.36144D-5 2.36145D-5
9.38086 2.43528D-5 2.50152D-5 2.50153D-5

9.50916 2.46938D-5 2.53562D-5 2.53563D-5
9.68198 2.51532D-5 2.58155D-5 2.58156D-5
9.75356 2.53434D-5 2.60058D-5 2.60058D-5

In Table 5.3, Ah and IA -hAd are same to those in Table 5.1. The term '1I - '\hI-est•l)' stands

for the estimated error by the first method (5.8). Also, 'IA - Ahl-est•-)' stands for the estimated

error by the second method (5.10).

Now, let us consider the second example:
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Example 5.2.
(U"(5) = eu(r) in J := (0, 1),

u(0) = u(1)= 0. 0

The exact solution is, for A > 0,

A=2p 2 Cos-, (12) , u(z) = In(co2 (~ o2(,Ux -2

with 0 < j < ir, and, for A < 0,

A -2,u2 cosh-2 (8) , u(x) =ln cosh 2 (8) cosh-2(x 2

with 0 < ja < oo. The exact solution has a turning point around A = -3.5138307... (a =

2.39935728...).

Again, we use the uniform mesh A,5 and the piecewise quadratic finite element space Sh.

In Table 5.4 we show a part of output of PITCON for the equation (5.11). In Table 5.4, the

meaning of the each column is exactly same to that of Table 5.1. Since the exact solution

manifold has the turning point, the continuation parameter was changed three times in this

case.

Table 5.4: The output of PITCON: Example 5.2.

Ah jA - Ah Hol-error 0
1 -error

8.40542 0.0 1.63866D-3 7.49987D-3
5.44008 0.0 8.22946D-4 3.57924D-3
2.49599 0.0 2.20383D-4 8.91786D-4
0.55874 0.0 1.37612D-5 5.19053D-5

-0.31518 9.05067D-10 4.98056D-6 1.79948D-5
-2.65152 1.03592D-6 6.32418D-4 1.85565D-3
-3.20484 2.62501D-6 1.27568D-3 3.5505 1D-3
-3.51384 6.80290D-6 2.80848D-3 7.86645D-3
-3.16924 1.36428D-5 5.66465D-3 1.69629D-2
-2.79878 1.72583D-5 7.69351 D-3 2.41313D-2
-2.40918 0.0 9.92705D-3 3.22005D-2
-2.01181 0.0 1.26025D-2 4.28233D-2
-1.65256 2.38990D-5 1.56130D-2 5.56118D-2
-0.81887 2.38261D-5 2.73707D-2 1.07902D-1
-0.35494 1.92353D-5 4.41004D-2 I 1.82042D-1

Now, let us discuss how we estimate the errors. As before, if A is the continuation parameter.

we consider the following equation:

ji h+ Aeuhiih)dz= - (u' ýh + Ae"uOh)dx, Vi~p E Sh.
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Then, by Theorem 3.1, 3.2, and Remark 3.8, I[ihIIHoi and 1ihIwi.oo indicate Itu - UhIIHL and

00

11U - uhlw .0, respectively.

If A is not the continuation parameter Uh(Xo), xO := 7h or 0o := 8h (h = 1/15) is taken

by PITCON as the continuation parameter again. Let (Oh, Ulh) E R x Sh and U2h E Sh be the

finite element solutions of the following equations:

(Ulhvh + Aheh Ulhvh)dz + Oh euhvhdx - - (uD'h + AheUh~h)dx, Vh E Sh,

with Ulh(XO) = 0 (see (3.8)), and

j(U2hh3 + AheuhU2hiýh)dx - - (u' .4 + Aheu•"•h)dx, Vi~h E .h with ih(Zo) = 0,

with U2h(xo) = 0 (see (3.22)). Then, by Theorem 3.4, 3.5, 3.7, and Remark 3.8, we have the

estimates (5.5) and (5.6).

Table 5.5: The estimated errors of JA - Aid + 11u - uhiI: Example 5.2.

A Hol-error Ho -est~l Hol-est W0 ''error W"0 '-est~l O et2

8.40542 1.63866D-3 1.63864D-3 7.49987D-3 7.51304D-3
5.44008 8.22946D-4 8.22950D-4 3.57924D-3 3.58542D-3
2.49599 2.20383D-4 2.20387D-4 8.91786D-4 8.93190D-4
0.55874 1.37612D-5 1.37615D-5 5.19053D-5 5.19762D-5

-0.31518 4.98056D-6 4.98073D-6 4.97980D-6 1.79948D-5 1.80164D-5 1.80155D-5
-2.65152 6.32418D-4 6.32790D-4 6.31403D-4 1.85565D-3 1.85655D-3 1.85520D-3
-3.20484 1.27568D-3 1.27705D-3 1.27309D-3 3.55051D-3 3.55423D-3 3.55014D-3
-3.51384 2.80848D-3 2.81408D-3 2.80173D-3 7.86645D-3 7.87953D-3 7.86662D-3
-3.16924 5.66465D-3 5.68141D-3 5.65102D-3 1.69629D-2 1.70139D-2 1.69809D-2
-2.79878 7.69351D-3 7.71847D-3 7.67615D-3 2.41313D-2 2.42075D-2 2.41704D-2
-2.40918 9.92705D-3 9.92680D-3 3.22005D-2 3.22601D-2
-2.01181 1.26025D-2 1.26020D-2 4.28233D-2 4.29783D-2
-1.65256 1.56130D-2 1.56603D-2 1.55881D-2 5.56118D-2 5.59372D-2 5.58390D-2
-0.81887 2.73707D-2 2.74236D-2 2.73431D-2 1.07902D-1 I 1.08632D-1 1.08644D-1
-0.35494 4.41004D-2 4.41342D-2 4.40703D-2 1.82042D-1 I 1.85414D-1 1.85044D-1

In Table 5.5, we summarize the results of computation. The meaning of the each column in

Table 5.5 is same to that of Table 5.2.
0

To estimates of JA - AhI, we consider the finite element solution Zh E Sh of the following

equation (see (4.12)): zh(Xo) = 0 and
I I.

fzIvi + Ahe'hzhvh)dx = (Vk'v' + Aie'Lhivi)dz, Vvp E Si with Vh(Zo) = 0,
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0

where V) E Sh is defined as before.
0

Next, let Wh E Sh be the finite element solution of the following equation (see (4.21)):

wh(zo) = 0 and
Ir 0

h+ AhehWhvh)dx = -- ehvhdz, Vvh E %h with Vh(X0) = 0.

We then compute the 'approximate jump' Jh(Ah) by (see (4.20))

Jh'(Ah) :j(w' ?P' + Aheuh WhVP + e',hVk)dx.

By Theorem 4.4, the error IA - Adh is estimated by (5.8) as before.

For the second method of a posteriori error estimates of IA - Ahl, we consider the finite

element solution (77h, zh) E R x Sh of the following equation (see (4.26)):

fUZzdx = 1, and ](ZhVh + heuhZhVh)dx= 7?hVh(XO), Vv E SA.

Let (h, 4) E R x Sh be the finite solution of the following: /i e 'Ahdz = 0 and

f hV'+ AheuhihVh)dx - llhh(XO) = ?lhh(XO) - Ij(Zh'ih + Aheuth Zhh)dx, V~h E Sh.

Then, we have the estimate iz - zhllH __ (l~i + lJhllHd )(1 + o(1)).

By Theorem 4.6, we obtain the estimate (5.10).

Table 5.6: The estimated errors of IA - Ahl: Example 5.2.

Ah IA - Ahl JA - Ahl-est(l) IA - Ahl-est( 2 )

-0.31518 9.05067D-10 9.07245D-10 9.07245D-10
-2.65152 1.03592D-6 1.03587D-6 1.03587D-6
-3.20484 2.62501D-6 2.62472D-6 2.62472D-6
-3.51384 6.80290D-6 6.80112D-6 6.80114D-6
-3.16924 1.36428D-5 1.36350D-5 1.36351 D-5
-2.79878 1.72583D-5 1.72446D-5 1.72447D-5
-1.65256 2.38990D-5 2.38564D-5 2.38567D-5
-0.81887 2.38261D-5 2.37475D-5 2.37480D-5
-0.35494 1.92353D-5 1.91313D-5 1.91315D-5

In Table 5.6 we summarize the results of computation. In Table 5.6, the meaning of the

each column is same to that of Table 5.3.

The last example is the following one which is strongly nonlinear (see [R,pl7]):
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Example 5.3.

(5.12) zT-A(u')+B(A'u)=O, inJ:=(0,1),{ U(0) = U(1) = 0, i

where the functions A(y), B(A, y) are defined as follows:

A(y) := arctan(y/2), B(A, y):= a(A, y)(1 + ý(-b(A, y)) + b(A,y)77(a(A,y)),

a(A, y) A sin(y) + v cos(y), b(A, y) := A cos(y) - v sin(y),

t/(1 - t), for t < 0, 77(t) arctan(t/2). 0
St + 2t 2 , for t > 0,

We set v := 1.0 in the computation.

The exact solution of (5.12) is not known. According to the output of PITCON, as is shown

in [R], the solution branch of (5.12) is 'S-shaped' and has two turning points.

Again, we use the uniform mesh A15 and the piecewise quadratic finite element space.

We explain how the errors are estimated. As before, if A is the continuation parameter, we

consider the following equation:

(--A(u )fi' + By(A, Uh)Ahih)dx = - (-A(ua )i' + B(A, Uh)Vh)dZ, V~ h E Si.

By Theorem 3.1, 3.2, and Remark 3.8, IIuhjjfi and IIWihlIlWa,- indicate Ilu - uhliHi and I[u -

UhIIWI,o-, respectively.

If A is not the continuation parameter uh(XO), zO := 7h (h = 1/15) is taken by PITCON as

the continuation parameter. Let (Oh, Ulh) E R x Sh and U2h E 35h be the finite element solutions

of the following equations:

L(Ay(u'h)U1ihvh + ByP(A, Uh)Uxh0h)dx + Oh I Bx(Ah, Uh)ýhdx

= (-A(uh) - + B(Ah, Uh)Oh)dx, YVh E 3h,

with Ulh(zo) = 0 (see (3.8)), and

+ Bv(Ah,U)U 2hh)dx

- - j(-A(uh)ih + B(Ah, Uh)h)dx, VWh SE, with h(X0) = 0.

with U2h(zo) = 0 (see (3.22)). Then, by Theorem 3.4, 3.5, 3.7, and Remark 3.8, we have the

estimates (5.5) and (5.6).
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To estimates of IA - Ahl, we consider the finite element solution Zh E Sh of the following

equation (see (4.12)): zh(XO) = 0 and

L-Auz'v' + By(AhUh)ZhVh)dx (-A((u' )Vz'v' + By(Ah,uUh)zVh)dx,

for all Vh E Sh with Vh(XO) = 0, where ?P E %h is defined as before.

Next, let wh E Sh be the finite element solution of the following equation (see (4.21)):

Wh(XO) = 0 and

hL(-Ay(u' )w' v + By(Ah,uh)whvh)dx= Bx(Ah~uh)vhdz, VVh E Sh with vh(zo) 0.

We then compute the 'approximate jump' J'(Ah) by (see (4.20))

Jh'(h) (AY~' )w V/+ B31(Ah, Uh)Wh2P + Bx(Ah, Uh)w)dx.

By Theorem 4.4, the error IA - Ahd is estimated by

(5.13) IA - Ahl < IJh(Ah)l-(CII•z - Zhllff.IlIu - UhIIHI + C211u - uhl H2)(1 + o(1)).

where C1 := IIAV(Uh)IILo* and C2 := ½iIAy,(u')(iP' - z')IILo.-

For the second method of a posteriori error estimates of IA - AhI, we consider the finite

element solution (77h, Zh) E R x Sh of the following equation (see (4.26)):

jBA(Ah,uh)zhdx = 1, and

(--A,(u')z'v' + By(Ah,uh)zhvh)dz = l7hVh(XO), VV E Sh.

Let (0h,1) E R x Sh be the finite solution of the following: L Bx(Ah, uh)-.5dx = 0 and

(--A•y( Uh)ihh "+ BV(Ah, Uh)~hh)dx - lhvh(XO)

=-hth(X0) - f(-Ay(u')z'0' + By(Ah, Uh)Zh h)dx, V'h E SE .

Then, we have the estimate IIz - ZhIIH _< (: hl + Ih4lH0)(0 + o(0)).

By Theorem 4.6, we obtain the estimate

(5.14) IA - AdI : (CIIIU - UhIIHI- liz - ZhIIHI- + C21JU - U/4hI )( + 0( I)),

where C, := IIA,(u')IIL•* and C2 := JiJAyy(uh)z-JILo*.

30



Table 5.7: The estimated errors of JA - \hI + IIu - uhII and IA - AhI: Example 5.3.

A/, HI-est(1 ) H/-est(2 ) W'--est(1) W0 '"--est(2 ) IA - AhI-est(I) IA - Ahl-est( 2)

0.19521 1.14416D-4 4.57789D-4

0.57696 1.09716D-4 3.80008D-4

0.97248 1.33223D-4 4.14384D-4

1.14096 1.56647D-4 1.56434D-4 4.84460D-4 4.84272D-4 2.13860D-7 2.13860D-7

1.79178 4.69535D-4 4.68635D-4 1.60921D-3 1.60849D-3 9.00308D-7 9.00307 D-7

2.46764 2.51702D-3 2.50907D-3 1.05407D-2 1.05376D-2 7.97236D-6 7.97234D-6

2.99606 1.24576D-2 1.23968D-2 5.72413D-2 5.72317D-2 6.19293D-5 6.19290D-5
3.24514 4.20951D-2 4.18066D-2 2.55047D-1 2.55964D-1 3.17004D-4 3.17003D-4

3.08956 5.04095D-2 3.20935D-1

1.95627 1.58211D-2 7.29373D-2

1.59592 1.19638D-2 1.19317D-2 5.39609D-2 5.41812D-2 3.37883D-5 3.37878D-5
1.19898 1.17190D-2 1.16916D-2 5.79405D-2 5.69798D-2 2.60112D-5 2.60120D-5
0.99403 3.20333D-2 3.20370D-2 1.91055D-1 1.91055D-1 4.70059D-5 4.70191 D-5

1.05847 1.06782D-1 1.06848D-1 7.26805D-1 7.27113D-1 1.97460D-4 1.97328D-4
1.29395 7.73202D-1 7.89621D-1I 6.10406D0 6.43073D0 1.12810D-3 1I11374D-3

In Table 5.7, we summarize the results of computation. According to PITCON. turning

points are at A = 3.24513871 and A = 0.99403398. The meaning of the each column in Table 5.7

is same as before.
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